
AdaCore technologies

for CENELEC EN 50128 2011

Eric Perlade

Technical Account Manager

RSSRail 2017

CENELEC EN 50128:2011

Slide: 3Copyright © 2012 AdaCore

CENELEC EN 50128

• Main standards applicable to railway systems

Complete System

Signalling sub-system

Equipement

Hardware Software

50126

50129

50159

50128

Slide: 4Copyright © 2012 AdaCore

Structure of CENELEC 50128:2011

EN 50128

Clause 4

Clause 5 Annex B

Clause 6

Clause 7

Clause 8

Clause 9

SSIL

Organization

Software Assurance

Generic software

Maintenance

Deployment

Techniques

Annex A Annex D

Application Data

Role

Bibliography of techniques

Slide: 5Copyright © 2012 AdaCore

AdaCore tools to support EN 50128

 Ada 2012 language

 SPARK 2014 language and verification toolset performing formal proof and

verification

 GNAT compiler

 CodePeer - static analysis tool that identifies potential run-time errors

 GNATmetric - metric computation tool

 GNATcheck - coding standard checker

 GNATdashboard - metric integration and management platform

 GNATtest - testing framework generator

 GNATemulator - processor emulator

 GNATcoverage - structural code coverage checker

Slide: 6Copyright © 2012 AdaCore

Contributions of AdaCore tools to the V cycle

Design Phase
Ada / SPARK languages

Implementation Phase
GNAT compiler

GNAT Programming Studio

Ada/SPARK languages

QGen

Testing Phase

GNATtest / GNATemulator/GNATcoverage

GNATcheck/GNATstack/GNATmetric

GNATdashboard

SPARK tools / CodePeer tool

Integration Phase
GNATtest

Slide: 7Copyright © 2012 AdaCore

AdaCore contributions to the

Software Quality Assurance

Plan

Slide: 8Copyright © 2012 AdaCore

A.3 Software Architecture

The Ada language and AdaCore technology do not provide support for software architecture per se, but

rather are more targeted towards software component design. However, the existence of some

capabilities at the lower level may enable certain design decisions at a higher level. This table contains

some hints of how that can be done.

Technique/Measure SIL 2 SIL 3/4 Comment

Defensive Programming HR HR Ada language + CodePeer + SPARK

Failure Assertion

Programming
R HR The Ada language => assertions and contracts

Diverse Programming R HR Ada <=> C / C++

Information Hiding - - Ada language => information encapsulation

Information Encapsulation HR HR
The Ada language enforce separation between interface of a module and

implementation

Fully Defined Interface HR M
The Ada language enforce separation between interface of a module and

implementation

Formal Methods R HR SPARK : defining data flow, functional properties …

Modelling R HR
Ada and SPARK allow defining certain modeling properties in the code and

provide means to verify them.

Structured Methodology HR HR Structured Methodology designs can be implemented with Ada.

Slide: 9Copyright © 2012 AdaCore

A.4 Software Design and Implementation

Technique/Measure SIL 2 SIL 3/4 Comment

Formal methods R HR
Ada or SPARK => requirements and interface can be written in the form of formal

boolean properties.

Modelling HR HR Ada and SPARK => defining certain modeling properties in the code

Structured methodology HR HR Ada => Structured Methodology designs can be implemented

Modular approach M M
Ada => A module can be represented as an Ada package (Interface, private part,

children)

Components HR HR Ada => Set of packages, project file (GPR file)

Design and coding standard HR M GNAT compiler + GNATcheck + GNAT2XML/ASIS

Analyzable programs HR HR

Ada => improved program analysis (type ranges, parameter modes, and

encapsulations)

GNATmetrics + GNATcheck => monitoring code complexity

CodePeer + SPARK => assessment of program analyzability

Strongly typed programming

language
HR HR Ada

Structured programming HR HR

Ada supports all the usual paradigms of structured programming. In addition to

these, GNATcheck can control additional design properties, such as explicit

control flows, where subprograms have single entry and single exit points, and

structural complexity is reduced.

Programming language HR HR
Ada can be used for most of the development, with potential connection to other

languages such as C or assembly.

Slide: 10Copyright © 2012 AdaCore

A.5 Verification and Testing

Technique/Measure SIL 2 SIL 3/4 Comment

Formal proofs R HR
Ada pre and post conditions + SPARK subset =>

formal verification of compliance implementation / contracts.

Static analysis HR HR See table A.19.

Dynamic analysis and testing HR HR See table A.13.

Metrics R R

GNATmetric can retrieve metrics, such as code size, comment

percentage, cyclomatic complexity, unit nesting, and loop nesting.

These can then be compared with standards.

Software error effect analysis R HR

GPS support code display and navigation. CodePeer can identify likely

errors locations in the code. This supports potential software error

detection and analysis throughout the code.

Test coverage for code HR HR See table A.21.

Functional / black-box testing HR HR See table A.14.

Interface testing HR HR
Ada strong typing

function contracts

Slide: 11Copyright © 2012 AdaCore

A.6 Integration

Technique/Measure SIL 2 SIL 3/4 Comment

Functional and Black-box Testing HR HR
GNATtest can generate a framework for

testing.

Performance Testing R HR
Stack consumption can be statically

studied using the GNATstack tool.

Slide: 12Copyright © 2012 AdaCore

A.7 Overall Software Testing

Technique/Measure SIL 2 SIL 3/4 Comment

Performance Testing HR M
Stack consumption can be statically studied using the

GNATstack tool.

Functional and Black-box testing HR M GNATtest can generate a testing framework for testing.

Slide: 13Copyright © 2012 AdaCore

A.8 Software Analysis Techniques

Technique/Measure SIL 2 SIL 3/4 Comment

Static Software Analysis HR HR See table A.19.

Dynamic Software Analysis R HR See table A.13 / A.14.

Software Error Effect Analysis R HR

GPS supports code display and navigation. CodePeer can

identify likely error locations in the code. These tools support

both detection of potential software errors and analysis

throughout the code.

Slide: 14Copyright © 2012 AdaCore

A.9 Software Quality Assurance

• Although AdaCore doesn’t directly provide services for ISO 9001 or configuration management, it follows

standards to enable tool qualification and/or certification. The following table only lists items that can be useful

to third parties.

Technique/Measure SIL 2 SIL 3/4 Comment

Data Recording and Analysis HR M
The data produced by tools can be written to files and

put in configuration management systems.

Slide: 15Copyright © 2012 AdaCore

A.10 Software Maintenance

Technique/Measure SIL 2 SIL 3/4 Comment

Impact Analysis HR M

The CodePeer tool contributes to identifying the impact of a

code change between two baselines, from the static analysis

point of view.

Data Recording and Analysis HR M
AdaCore tools are driven from the command line and produce

result files including the date and version of the tool used.

Slide: 16Copyright © 2012 AdaCore

A.11 Data Preparation Techniques

Technique/Measure SIL 2 SIL 3/4 Comment

Tabular Specification Methods R R
Tables of data can be expressed using the Ada language,

together with type-wide contracts (predicates or invariants).

Formal design reviews HR HR
GPS can display code and navigate through the code as a

support for walkthrough activities.

Formal proof of correctness (of data) - HR

When contracts on tables are expressed within the SPARK

subset, the correctness of these contracts can be formally

verified.

Walkthrough R HR
GPS can display code and navigate through the code as a

support for walkthrough activities.

Slide: 17Copyright © 2012 AdaCore

A.12 Coding Standards

The GNAT compiler can define base coding standard rules to be checked at compile-time. GNATcheck

implements a wider range of rules. GNAT2XML can be used to develop specific coding rules.

Technique/Measure SIL 2 SIL 3/4 Comment

Coding Standard HR M GNATcheck

Coding Style Guide HR HR GNATcheck

No Dynamic Objects R HR GNATcheck

No Dynamic Variables R HR GNATcheck

Limited Use of Pointers R R GNATcheck

Limited Use of Recursion R HR GNATcheck

No Unconditional Jumps HR HR GNATcheck

Limited size and complexity of Functions, Subroutines

and Methods
HR HR

GNATmetrics can compute complexity

GNATcheck can report excessive complexity.

Entry/Exit Point strategy for Functions, Subroutines and

Methods
HR HR GNATcheck

Limited number of subroutine parameters R R GNATcheck

Limited use of Global Variables HR M

GNATcheck

SPARK can enforce documentation and verification of

functions side effects, including usage of global variables.

Slide: 18Copyright © 2012 AdaCore

A.13 Dynamic Analysis and Testing

Technique/Measure SIL 2 SIL 3/4 Comment

Test Case Execution from Boundary Value

Analysis
HR HR

GNATtest can generate and execute a testing

framework for an actual test written by

developers from requirements.

Equivalence Classes and Input Partition

Testing
R HR

Ada and SPARK provide specific features for

partitioning function input and verifying that this

partitioning is well formed (i.e., no overlap and

no hole).

Structure-Base Testing R HR See table A.21.

Slide: 19Copyright © 2012 AdaCore

A.14 Functional/Black Box Test

• GNATtest can generate and execute a testing framework - actual

test being written by developers from requirements.

Technique/Measure SIL 2 SIL 3/4 Comment

Boundary Value Analysis R HR
GNATtest can be used to implement tests

coming from boundary value analysis.

Equivalence Classes and Input Partitioning

Testing
R HR

Ada and SPARK provide specific features

for partitioning function input and verifying

that this partitioning is well formed (i.e., no

overlap and no hole).

Slide: 20Copyright © 2012 AdaCore

A.15 Textual Programming Language

Technique/Measure SIL 2 SIL 3/4 Comment

Ada HR HR GNAT Pro tools support all versions of the Ada language.

C or C++ R R The GNAT Pro compiler supports C and C++.

Slide: 21Copyright © 2012 AdaCore

A.17 Modelling

Technique/Measure SIL 2 SIL 3/4 Comment

Data Modelling R HR
Ada allows modelling data constraints, in the form of type

predicates.

Data Flow Diagram R HR
SPARK allows defining data flow dependences at subprogram

specification.

Formal Methods R HR
Ada and SPARK allow defining formal properties on the code that

can be verified by the SPARK toolset.

Slide: 22Copyright © 2012 AdaCore

A.18 Performance Testing

Technique/Measure SIL 2 SIL 3/4 Comment

Response Timing and Memory

Constraints
HR HR

GNATstack can statically analyse

stack usage.

Slide: 23Copyright © 2012 AdaCore

A.19 Static Analysis

Technique/Measure SIL 2 SIL 3/4 Comment

Boundary Value Analysis R HR

CodePeer can computes boundary values for variables and parameters from the

source code. CodePeer and SPARK can provide various verifications looking at

potential values and boundaries values of variables such as detection of attempts to

dereference a variable that could be null, values outside the bounds of an Ada type or

subtype, buffer overflows, numeric overflows or wraparounds, and divisions by zero. It

can also help confirming expected boundary values of variables and parameters

coming from the design.

Control Flow Analysis HR HR

CodePeer and SPARK can detect suspicious and potentially incorrect control flows,

such as unreachable code, redundant conditionals, loops that either run forever or fail

to terminate normally, and subprograms that never return. GNATstack can compute

maximum amount of memory used in stacks looking at the control flow. More generally,

GPS provides visualization for call graphs and call trees.

Data Flow Analysis HR HR

CodePeer and SPARK can detect suspicious and potentially incorrect data flow, such

as variables being read before they’re written (uninitialized variables), values that are

written to variables without being read (redundant assignments or variables that are

written but never read).

Walkthroughs/Design Reviews HR HR
GPS can display code and navigate through the code as a support for walkthrough

activities.

Slide: 24Copyright © 2012 AdaCore

A.20 Components

Technique/Measure SIL 2 SIL 3/4 Comment

Information Encapsulation HR HR

Ada provides the necessary features to separate the interface of a

module from its implementation, and enforce respect of this

separation.

Parameter Number Limit R R
GNATcheck can limit the number of parameters for subroutines and

report violations.

Fully Defined Interface HR M
Ada offers many features to complete interface definition, including

behavior specification.

Slide: 25Copyright © 2012 AdaCore

A.21 Test Coverage for Code

Technique/Measure SIL 2 SIL 3/4 Comment

Statement HR HR GNATcoverage provides statement-level coverage capabilities.

Branch R HR GNATcoverage provides branch-level coverage capabilities.

Compound Condition R HR
GNATcoverage provides MC/DC coverage capabilities, which can

be used as an alternative to Compound Condition.

Slide: 26Copyright © 2012 AdaCore

A.22 Object Oriented Software Architecture

Technique/Measure SIL 2 SIL 3/4 Comment

Use of suitable frames, commonly used

combinations of classes and design

patterns

R HR
The conventional OO design patterns can be

implemented with Ada.

Object Oriented Detailed Design R HR See table A.23.

Slide: 27Copyright © 2012 AdaCore

A.23 Object Oriented Detailed Design

Technique/Measure SIL 2 SIL 3/4 Comment

Class should have only one objective R HR
It’s possible in Ada to write classes with a unique

objective.

Inheritance used only if the derived class

is a refinement of its basic class
HR HR

Ada and SPARK can enfore respecting the

Liskov Substitution Principle, ensuring inheritance

consistency.

Depth of inheritance limited by coding

standards
R HR GNATcheck can limit inheritance depth.

Overriding of operations (methods) under

strict control
R HR

Ada can enforce explicit notation for overriding

methods.

Multiple inheritance used only for

interface classes
HR HR

Ada only allows multiple inheritance from

interfaces.

Ada

Slide: 29Copyright © 2012 AdaCore

Ada - Language overview

• Ada is a general purpose language

– Designed with high-integrity / safety-critical / high-security in mind

+ strong type checking

+ contract based programming

+ detecting and responding to exceptional run-time conditions

• Ada is evolving

– Defined in 83, revised in 95, 2005 and 2012

• Ada is easy to learn

– Simple syntax, traditional features

• Ada is efficient

– It may hurt, but you can consider it to the same order of efficiency as C++ or other native

languages

Slide: 30Copyright © 2012 AdaCore

Ada - Features

• Ada is a general purpose language
– Strong typing

– Abstractions to fit program domain

– Generic programming/templates

– Exception handling

– Facilities for modular organization of code

– Standard libraries for I/O, string handling, numeric computing, containers

– Object-Orientated programming

– Systems programming

– Concurrent programming

– Real-time programming

– Contract based programming

– Distributed systems programming

– Numeric processing

– Interfaces to other languages (C, COBOL, Fortran)

– It contains all features of modern programming languages (encapsulation, object orientation,

genericity, tasking…)

Slide: 31Copyright © 2012 AdaCore

Ada - However

• The full language is inappropriate in a safety-critical application

– generality and flexibility may interfere with traceability / certification requirements.

• Ada addresses this issue by supplying a

• compiler directive,

• pragma Restrictions, that allows you to constrain the language features to a

well-defined subset (for example, excluding dynamic OOP facilities). Ada is

a general purpose language

Slide: 32Copyright © 2012 AdaCore

Ada benefits

C/C++ C#/Jav

a

Ada

Robustness

Achieved

Developer

Responsibility

Tool

Responsibility

Language

Responsibility

Assembly

Slide: 33Copyright © 2012 AdaCore

Ada - conclusion

• Helps you design safe and reliable code

• Reduces development costs

• Supports new and changing technologies

• Facilitates development of complex programs

• Helps make code readable and portable

• Reduces certification costs for safety-critical software

Slide: 34Copyright © 2012 AdaCore

Ada – Annex D references

•D.2 Analyzable Programs

•D.4 Boundary Value Analysis

•D.14 Defensive Programming

•D.18 Equivalence Classes and Input Partition Testing

•D.24 Failure Assertion Programming

•D.33 Information Hiding / Encapsulation

•D.34 Interface Testing

•D.35 Language Subset

•D.38 Modular Approach

•D.49 Strongly Typed Programming Languages

•D.53 Structured Programming

•D.54 Suitable Programming Languages

•D.57 Object Oriented Programming

•D.60 Procedural Programming

SPARK

Slide: 36Copyright © 2012 AdaCore

SPARK - Overview

• SPARK is a software development technology specifically designed for

engineering high-reliability applications

• SPARK is a Ada-based language and toolset allowing to perform formal analysis

– Absence of run-time errors

– Data Flow and Information Flow analysis

– Correctness with regards to specifications / contracts

• SPARK 2014 is a new language and toolset based on Ada 2012 including

– A much wider support for the Ada constructions

– A format for contract associated with formal and executable semantics

– An environment ready for local type substitutability proof

– An environment ready for low-level requirement compliance and robustness verification

– An integration environment between unit testing and unit proof

Slide: 37Copyright © 2012 AdaCore

SPARK - Flexibility

SPARK 2014 code can easily be combined with full Ada code or with C

Unit Testing

Unit Proof

Unit Verification

Slide: 38Copyright © 2012 AdaCore

SPARK - Supporting V cycle activities

Functional Requirement Functional Verification

Software Architecture Software Architecture Verification

Unit Requirements Unit Verification

Code Robustness Verification

SPARK 2014

Slide: 39Copyright © 2012 AdaCore

SPARK - Ada 2012 additions for contract specification

• Contracts on subprograms

• Contracts on types

• New expressions such as quantifiers

• All of these construction are provided with dynamic semantics by Ada 2012

• All of these construction are provided with proof semantics by SPARK 2014

G : Integer;

procedure P (X, Y : Integer)

with Pre => X + Y > 0;

Post => G = G’Old + 1;

type Even is new Integer with

Dynamic_Predicate => Even mod 2 = 0;

type Sorted_Array is array (Integer range <>) of Integer

with Dynamic_Predicate =>

Sorted_Array’Size <= 1

or else (for all I in Sorted_Array’First .. Sorted_Array’Last – 1 =>

Sorted_Array (I) <= Sorted_Array (I + 1));

Slide: 40Copyright © 2012 AdaCore

SPARK – Data-flow analysis

• Data-flow analysis reveals

– conditional or unconditional use of undefined variables

– unused variable definitions

– ineffective statements

procedure Calc (X : in out Integer)

is

T : Integer;

begin

T := T + X; -- error, T has not been assigned a value

X := T;

end Calc;

Slide: 41Copyright © 2012 AdaCore

SPARK - Extensions to Architecture Definition

G : Integer;

procedure P (X, Y : Integer)

with Global => (Out => G),

Depends => ((G) => (X, Y));

G is a global variable written

No other global variable is accessed or modified

The value of G is computed from the value of X and Y

Slide: 42Copyright © 2012 AdaCore

SPARK - Information-flow analysis

 Information-flow analysis checks body against Depends annotation

procedure Swap (X, Y : in out Integer)

with Depends (X => Y,

Y => X);

procedure Swap (X, Y : in out Integer)

is

T : Integer;

begin

T := X; X := Y; Y := X;

end Swap; -- error Y doesn’t depend on initial value of X

Slide: 43Copyright © 2012 AdaCore

SPARK – Formal verification

• Formal proof that the program satisfies specified properties

– RTE proof or robustness proof – verifies that no exceptions will be raised

– Partial correctness proof – verifies the program against some specification

(assuming normal termination)

– Full correctness proof – verifies the program against some specification (including

proof of normal termination)

Slide: 44Copyright © 2012 AdaCore

SPARK - Annex D References

•D.2 Analyzable Programs

•D.4 Boundary Value Analysis

•D.10 Data Flow Analysis

•D.14 Defensive Programming

•D.18 Equivalence Classes and Input Partition Testing

•D.24 Failure Assertion Programming

•D.28 Formal Methods

•D.29 Formal Proof

•D.34 Interface Testing

•D.35 Language Subset

•D.38 Modular Approach

•D.57 Object Oriented Programming

GNAT Pro toolset

Slide: 46Copyright © 2012 AdaCore

GNAT Pro overview

• Configurable Run-Time Library

• Simplification of certification effort

• Traceability

• Safety-critical support and expertise

Slide: 47Copyright © 2012 AdaCore

• Intraprocedural and low-noise (incomplete)

• Flow-sensitive but path-insensitive and context-insensitive

• Detects:

– Certain errors at run-time

– Probable logic errors

– Dead or useless code

– Possible mismatch with user expectations

– Representation-related mismatch

– Portability issues

Compiler Warnings

Slide: 48Copyright © 2012 AdaCore

• Mostly local, but can span a complete unit

• Style enforcement

– Casing, blanks, indentation, comments, line length

• Sound engineering

– Maximum nesting, alphabetical order, separate specs

• Definition of safe subset

– Restricted use of non-lazy and/or, explicit overriding

Compiler Style Checks

Slide: 49Copyright © 2012 AdaCore

• Define a subset of the Ada language

• Standard restrictions + GNAT specific

• Control over many features:

– Tasking, exceptions, dispatching, tagged types, implicit control structures, aliasing, elaboration,

dependences

• Benefits:

– Faster execution (different code generation)

– Safe coding

– Compiler and target portability

Restrictions

Slide: 50Copyright © 2012 AdaCore

• Insertion of dynamic checks in binary

• Checks

– Run-time checks

– Assertions

– Contracts (including pre- and postconditions) [Ada2012]

– Validity checks

– Overflow detection

– Uninitialized variables detection

• Controlled by:

– Compiler options

– Configuration pragmas

– Local pragmas

GNAT Dynamic Checks

Slide: 51Copyright © 2012 AdaCore

GNAT Pro - Annex D References

•D.10 Data Flow Analysis

•D.15 Coding Standards and Style Guide

•D.18 Equivalence Classes and Input Partition Testing

•D.35 Language Subset

CodePeer

Slide: 53Copyright © 2012 AdaCore

CodePeer – Reducing cost

Development Test Integration Deployment

Cost of a Fix

CodePeer will help finding more problems here

Slide: 54Copyright © 2012 AdaCore

• CodePeer is an advanced static analysis tool

– It provides data prior to execution and test

• It helps to identify or clear out vulnerabilities and bugs in the application

– Possible run-time errors

– Useless and redundant constructs

– Race conditions

• It is modular and scalable

– Can be used on an entire project or a single file

– Can be configured to be more or less strict, from super-warning to sound

– Can be adapted to filter out or emphasis certain issues

– Can concentrate on differences between baselines / versions

• It is flexible

– Usable with Ada 83, 95, 2005, 2012

– Supports most Ada compilers and targets

CodePeer - Overview

Slide: 55Copyright © 2012 AdaCore

CodePeer - Usage

CodePeer

Code Quality
Indications

Third Party
Code Analysis

Safety
Assessments

Bug Detection

Code Review
Help

Impact
Analysis

Slide: 56Copyright © 2012 AdaCore

CodePeer - Errors classifications

• Run-time errors

– Checks added implicitly by the compiler (index checks, range checks, division by zero, …)

– Explicit Assertions, Pre/Post Conditions, Predicates and Invariants

– Explicitly raised exceptions

– Uninitialized variables (both global and local)

– Inconsistency between subprogram implicit preconditions and caller

• Consistency/logic errors

– Dead code

– Tests always true

– Never ending loops

– Suspicious implicit preconditions

– Useless assignments

• Race conditions

– Unprotected access to variables in multiple tasks

Slide: 57Copyright © 2012 AdaCore

• Display possible values of variables

• Backtrace capability on messages related to preconditions

CodePeer - Static debugger

Slide: 58Copyright © 2012 AdaCore

• Messages have an associated rank

– Rank = severity + likelihood

– High: certain problem

– Medium: possible problem

– Low: less likely problem (yet useful for completeness)

• Filtering of messages

– Command line, GPS and GNATbench

– Pattern-based automatic filtering (MessagePatterns.xml)

• Add review status in database

– GPS, HTML web server

• Add message review pragma in code

• Use external justification connected to output

– Textual output: compiler-like messages or CSV format

CodePeer - Code review

Slide: 59Copyright © 2012 AdaCore

CodePeer computes the possible value of every variable and every

expression at each program point.

It starts with leaf subprograms and propagates information up in the call-

graph, iterating to handle recursion.

For each subprogram:

– It computes a precondition that guards against check failures.

– It issues check/warning messages for the subprogram.

– It computes a postcondition ensured by the subprogram.

– It uses the generated subprogram contract (precondition + postcondition) to analyze calls.

CodePeer - How does CodePeer work?

Slide: 60Copyright © 2012 AdaCore

CodePeer – Annex D references

•D.2 Analyzable Programs

•D.4 Boundary Value Analysis

•D.8 Control Flow Analysis

•D.10 Data Flow Analysis

•D.14 Defensive Programming

•D.18 Equivalence Classes and Input Partition Testing

•D.24 Failure Assertion Programming

•D.32 Impact Analysis

Slide: 61Copyright © 2012 AdaCore

GNATcheck

Slide: 62Copyright © 2012 AdaCore

• Automates code standard verification

• Can drive GNAT style checks / warnings / restrictions

– Extends the “simple” compiler warnings and style checks

– Add more comprehensive rules (~ 80 rules)

• Style-Related rules

– Tasking

– Object Orientation

– Portability

– Program Structure

– Programming practice

– Readability

• Checks various aspects of the code

– Feature usage

– Metrics violation

– Portability

– Programming practies

• Rules can be exempted if documented by a pragma

GNATcheck - Coding Standard Verification

Slide: 63Copyright © 2012 AdaCore

GNATcheck - Examples of rules

• Limit tagged types derivation depth

• Forbid non-standard attributes

• Forbid goto statements

• Forbid use clause

• Forces explicit “in” mode

• Forbid equality between floats

• Forbid default parameters

• Forbid multiple return statement

• Force identifier naming conventions

• Forbid recursively

• Forbid unassigned out parameters

• …

Slide: 64Copyright © 2012 AdaCore

GNATcheck - Annex D References

•D.2 Analyzable Programs

•D.14 Defensive Programming

•D.15 Coding Standard and Style Guide

•D.35 Language Subset

•D.37 Metrics

GNATmetrics

Slide: 66Copyright © 2012 AdaCore

GNATmetrics – Metrics of Code Quality

• Various kinds of lines counting (all, comment, blank, code…)

• Syntactical metrics

– Source Lines

– Nesting

– Entities (subprograms, types)

• Complexity

– McCabe Cyclomatic

– McCabe Essential

– Loop nesting

• Coupling (fan-out / fan-in)

Slide: 67Copyright © 2012 AdaCore

GNATmetrics - Annex D References

•D.2 Analyzable Programs

•D.14 Defensive Programming

•D.15 Coding Standard and Style Guide

•D.35 Language Subset

•D.37 Metrics

GNATdoc

Slide: 69Copyright © 2012 AdaCore

GNATdoc –Adocumentation

• Generates an HTML documentation from your source code

• Syntax highlighting

• Cross references

• Multiple indexes

– Packages, entities, source files, inheritance tree …

• Extracts inline information from comments

GNATtest

Slide: 71Copyright © 2012 AdaCore

GNATtest - Why Automate the Process?

• Developing tests is labor-intensive

• Much of the effort is not specific to the tests

– Developing the harness and driver

– How to test generic units, etc.

– Verifying output is as expected

– Maintenance and update when new units to be tested

• Ideally developers should concentrate on the high-value part: the test cases

themselves

Slide: 72Copyright © 2012 AdaCore

GNATtest - Overview

• Automatically creates and maintains harness code, and unit test skeletons

for each subprogram to be tested

• Developers can thus focus on the high-value task of writing the actual test

cases

• Especially valuable in systems requiring high levels of reliability, safety,

and/or security

– Simplifies effort required to implement required test procedures

– Can use GNATcoverage to verify test completeness

• Supports contract-based programming tests

• Fully integrated into GPS

• Supports native, cross and high-integrity platforms

Slide: 73Copyright © 2012 AdaCore

GNATtest - Generated Outputs

obj

…

src

root

…

gnattest

harness

unit_tests

…

• Automatic harness code (driver infrastructure)

– Can be destroyed and regenerated at will

• Unit test skeletons (actual unit test code)

– One for each visible subprogram in packages to be tested

– You manually modify for specific tests’ logic

– Not overwritten if already exists

Slide: 74Copyright © 2012 AdaCore

• D.50 Structure Based Testing

GNATtest - Annex D references

GNATemulator

Slide: 76Copyright © 2012 AdaCore

GNATemulator - Overview

• Fast emulation of target architecture

– Translates PowerPC instructions into x86 on the fly

• Emulates a processor with some simple devices

• Additional devices can be implemented through the GNAT Bus mechanism

• GNATemulator is ideal to run unit testing while exercising:

– The target compiler

– The appropriate data representation (endianness)

$> powerpc-elf-gnatemu executable

Slide: 77Copyright © 2012 AdaCore

• D.50 Structure Based Testing

GNATemulator - Annex D references

GNATcoverage

Slide: 79Copyright © 2012 AdaCore

• Coverage Analysis - Multiple Modes of Operation

– Object coverage

– Instruction

– Branch

– Source coverage

– Statement

– Decision

– Modified Condition / Decision Coverage (MC/DC)

• Run and Capture Execution Trace Data

• Coverage Analysis of Execution Trace Data

• Coverage analysis on target for boards with trace capabilities

GNATcoverage - overview

Slide: 80Copyright © 2012 AdaCore

• Compiler switches

-g

Debug data

-fpreserve-control-flow

Control Optimizers for precise SLOC info

-fdump-scos

Source Coverage Obligation in *.ali files

up to -O1

Support for Optimizations (upto -O1)

• Inlining Allowed (-gnatn)

• No External Libraries Needed

• All can be achieved using GNAT Project file scenario variables

GNATcoverage – Build considerations

Slide: 81Copyright © 2012 AdaCore

GNATcoverage - Instrumenting the Execution Platform

HOST

TARGET

Pure
Functional Test

Instrumented
Functional Test

Instrumented
Executable

Sources

Approach by Instrumentation

Executable

Compilation
Link

Compilation

Link
Instrumentation

Coverage

Data

Coverage

Information

Compilation
Link

Sources

Pure
Functional Test

Pure
Functional Test

GNATemulator /

Valgrind

Coverage

Data

Executable

Coverage

Information

Approach by Virtualization

Slide: 82Copyright © 2012 AdaCore

• xcov - Annotated Sources

in Text Format

• report - Textual Summary

• HTML - Colours,

Sortable Columns and

Per-project indexes

GNATcoverage - Output

Slide: 83Copyright © 2012 AdaCore

• D.50 Structure Based Testing

GNATcoverage - Annex D references

GNATstack

Slide: 85Copyright © 2012 AdaCore

GNATstack - Overview

• A static analyzer for maximum stack requirements

– Max per subprogram

– Max per task

• Conservative: indicates when it’s not accurate

• Sound: believable when it says it is accurate

• Especially useful in a high-integrity context

– You must know memory usage prior to execution

– You have access to all source code

– Coding standards likely preclude problematic constructs

Slide: 86Copyright © 2012 AdaCore

GNATstack - Capabilities

• Supports both Ada and C (and C++ “soon”)

• Supports all targets (native and cross)

• Does not involve executing the application

• Can determine actual worst case utilization

• Allows any optimization level

• Handles concurrent programs

• Handles dynamic dispatching

• Available on command-line

• Integrated with GNAT Programming Studio (GNAT Pro IDE)

Slide: 87Copyright © 2012 AdaCore

GNATstack - Workflow

Ada and C Sources

graph: { title: "C:\simple
node: { title: "_Unwind_
edge: {sourcename: "_ada_
edge: {sourcename: "_ada_
}

.ci

Files

XML

Report

package R is
...
...
...

end R;

package Q is
...
...
...

end Q;

package P is
...
...
...

end P;

Optional

user inputs for stack sizes

and call cycle bounds

……………….…
…………………
…………………..

……………….…
…………………
…………………..

0001110111
000110
000111100101010
0000111101

0001110111
000110
000111100101010
0000111101

0001110111
000110
000111100101010
0000111101

Object & ALI

Files

GNAT Pro Compiler

Stack usage and

call graph info

GNATstack

VCG

Textual

Report

graph: { title: "C:\simple
node: { title: "_Unwind_
edge: {sourcename: "_ada_
edge: {sourcename: "_ada_
}

graph: { title: "C:\simple
node: { title: "_Unwind_
edge: {sourcename: "_ada_
edge: {sourcename: "_ada_
}

GNATdashboard

Slide: 89Copyright © 2012 AdaCore

• GNATdashboard integrates and aggregates the results of AdaCore’s various

static and dynamic analysis tools helping quality assurance managers and

project leaders understand or reduce their software’s technical debt, and

eliminating the need for manual input.

• Provides a common interface to view code quality data and metrics such as:

– Code complexity

– Code coverage

– Conformance with standards

• Fits into a continuous integration environment

• Uses project files to configure, run and analyze tool output

• Integrates with the SQUORE and SonarQube platforms to visualize the

result

GNATdashboard - Overview

Slide: 90Copyright © 2012 AdaCore

GNATdashboard - Architecture

GNATmetric

GNATcheck

GNATcoverage

CodePeer

SPARK 2014

Custom toolsCustom toolsCustom tools

Slide: 91Copyright © 2012 AdaCore

Architecture

GNATmetric

GNATcheck

GNATcoverage

CodePeer

SPARK 2014

Custom toolsCustom toolsCustom tools

Metrics &

Messages

GNATdashboard

Driver

Slide: 92Copyright © 2012 AdaCore

Architecture

GNATmetric

GNATcheck

GNATcoverage

CodePeer

SPARK 2014

Custom toolsCustom toolsCustom tools

Metrics &

Messages

GNATdashboard

Driver

GPSplug-in

GNATbenchplug-in

GNATdoc / HTMLplug-in

SonarQubeplug-in

SQUORINGplug-in

Reporting toolsReporting toolsReporting tools

Slide: 93Copyright © 2012 AdaCore

Architecture

GNATmetric

GNATcheck

GNATcoverage

CodePeer

SPARK 2014

Custom toolsCustom toolsCustom tools

Metrics &

Messages

GNATdashboard

Driver

GPSplug-in

GNATbenchplug-in

GNATdoc / HTMLplug-in

SonarQubeplug-in

SQUORINGplug-in

GNATdashboard

Reporting toolsReporting toolsReporting tools

Slide: 94Copyright © 2012 AdaCore

GNATdashboard + SonarQube

Slide: 95Copyright © 2012 AdaCore

Conclusion

• AdaCore has verification tools that are applicable to the different

phases in the classic V-model.

• Presented tools have been or can be qualified as EN 50128 T2 tool

• GNAT compiler has been qualified as EN 50128 T3 tool

• Developers can leverage the increase in tool responsibility to

continuously verify and catch defects early.

